Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

2006 Southwest Florida Water Management District (SWFWMD) Lidar: Upper Myakka District

1.2. Summary description of the data:

EarthData International collected ALS-50-derived LiDAR over Upper Myakka Florida with a one-meter post spacing. The

period of collection was between 3 October and 12 October 2006. This data set falls in Manatee County. The collection was

performed by EarthData Aviation, using a Leica ALS-50 LiDAR system, including an inertial measuring unit (IMU) and a dual

frequency GPS receiver. This project required six lifts of flight lines to be collected. The product generated consisted of

LiDAR bare earth elevation models in LAS format. This data set is one component of a digital terrain model (DTM) for the

Southwest Florida Water Management District's FY2005 Digital LiDAR Project (H048), encompassing approximately 291 square

miles across Manatee County. The 2005 LiDAR dataset is comprised of 3-D mass points delivered in the LAS file format based

on the District's 5,000' by 5,000' grid (325 cells). The other DTM component is 2-D and 3-D breakline features in the ESRI

ArcGIS Personal Geodatabase format. In accordance with the 2005 SWFWMD Topographic Database Design, the following breakline

closed water bodies (lakes, reservoirs, etc) as 3-D polygons; linear hydrographic features (streams, canals, swales,

embankments, etc) as 3-D breaklines; coastal shorelines as 3-D linear features; edge of pavement road features as 3-D

breaklines; soft features (ridges, valleys, etc.) as 3-D breaklines; obscured vegetation polygons as 2-D polygons; overpasses

and bridges as 3-D breaklines; 1-foot contours for visualization purposes; and island features as 3-D polygons. Breakline

features were captured to develop a hydrologically correct DTM. Contours (1-foot) were generated from the DTM that meet the

National Map Accuracy Standards for 2-foot contours (FEMA specifications). Bare earth LiDAR mass point data display a vertical

accuracy of at least 0.3-feet root mean square error (RMSE) in open unobscured areas.

Original contact information:

Contact Name: Mapping and GIS section

Contact Org: Southwest Florida Water Management District

Phone: 352.796.7211

1.3. Is this a one-time data collection, or an ongoing series of measurements?

One-time data collection

1.4. Actual or planned temporal coverage of the data:

2006-10-03 to 2006-10-12

1.5. Actual or planned geographic coverage of the data:

W: -82.451361, E: -81.879906, N: 27.555841, S: 27.176931

1.6. Type(s) of data:

(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)

1.7. Data collection method(s):

(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:

NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:

Metadata Contact

2.3. Affiliation or facility:

NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:

coastal.info@noaa.gov

2.5. Phone number:

(843) 740-1202

3. Responsible Party for Data Management

Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:

Data Steward

4. Resources

Programs must identify resources within their own budget for managing the data they produce.

- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

(describe or provide URL of description):

Process Steps:

- 2006-11-15 00:00:00 The airborne GPS data were processed and integrated with the IMU. The results were imported into the processing system for use in the LiDAR boresight. The raw LiDAR data was downloaded onto a production server. The ground control and airport GPS base station were used in conjunction with the processed ABGPS results for the LiDAR boresight. The properly formatted processing results were used for subsequent processing.
- 2007-01-15 00:00:00 EarthData has developed a unique method for processing LiDAR data to identify and remove elevation points falling on vegetation, buildings,

and other aboveground structures. The algorithms for filtering data were utilized within EarthData's proprietary software and commercial software written by TerraSolid. This software suite of tools provides efficient processing for small to large-scale, projects and has been incorporated into ISO 9001 compliant production work flows. The following is a step-by-step breakdown of the process. 1. Using the LiDAR data set provided by EarthData Aviation, the technician performs calibrations on the data set. 2. The technician performed a visual inspection of the data to verify that the flight lines overlap correctly. The technician also verified that there were no voids, and that the data covered the project limits. The technician then selected a series of areas from the data set and inspected them where adjacent flight lines overlapped. These overlapping areas were merged and a process which utilizes 3-D Analyst and EarthData's proprietary software was run to detect and color code the differences in elevation values and profiles. The technician reviewed these plots and located the areas that contained systematic errors or distortions that were introduced by the LiDAR sensor. 3. Systematic distortions highlighted in step 2 were removed and the data was re-inspected. Corrections and adjustments can involve the application of angular deflection or compensation for curvature of the ground surface that can be introduced by crossing from one type of land cover to another. 4. The LiDAR data for each flight line was trimmed in batch for the removal of the overlap areas between flight lines. The data was checked against a control network to ensure that vertical requirements were maintained. Conversion to the client-specified datum and projections were then completed. The LiDAR flight line data sets were then segmented into adjoining tiles for batch processing and data management. 5. The initial batch-processing run removed 95% of points falling on vegetation. The algorithm also removed the points that fell on the edge of hard features such as structures, elevated roadways and bridges. 6. The operator interactively processed the data using LiDAR editing tools. During this final phase the operator generated a TIN based on a desired thematic layer to evaluate the automated classification performed in step 5. This allowed the operator to quickly re-classify points from one layer to another and recreate the TIN surface to see the effects of edits. Geo-referenced images were toggled on or off to aid the operator in identifying problem areas. The data was also examined with an automated profiling tool to aid the operator in the reclassification. 7. The point cloud data were delivered in LAS format. 10 - points in wetlands and ditches, 9 - points in water, 2 ground points, and 1 - all other.

- 2008-01-25 00:00:00 - The NOAA Office for Coastal Management (OCM) received the files in LAS format. The files contained Lidar elevation measurements. The data was in Florida State Plane Projection and NAVD88 vertical datum. OCM performed the following processing to the data to make it available within the Digital Coast Data Access Viewer (DAV): 1. The data were converted from Florida State Plane West coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid 03. 3. The LAS data were sorted by latitude and the headers were updated.

5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?

No

6.1.1. If metadata are non-existent or non-compliant, please explain:

Missing/invalid information:

- 1.6. Type(s) of data
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/50030

6.4. Process for producing and maintaining metadata

(describe or provide URL of description):

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-

Data Documentation v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

- 7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?
- 7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:
- 7.2. Name of organization of facility providing data access:

NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=69 https://coast.noaa.gov/htdata/lidar1_z/geoid18/data/69

7.3. Data access methods or services offered:

This data can be obtained on-line at the following URL: https://coast.noaa.gov/dataviewer;

- 7.4. Approximate delay between data collection and dissemination:
 - 7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection

The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:

(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To

Be Determined, Unable to Archive, or No Archiving Intended)

- 8.1.1. If World Data Center or Other, specify:
- 8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:
- **8.2. Data storage facility prior to being sent to an archive facility (if any):**Office for Coastal Management Charleston, SC
- 8.3. Approximate delay between data collection and submission to an archive facility:
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

9. Additional Line Office or Staff Office Questions

Line and Staff Offices may extend this template by inserting additional questions in this section.